Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kaliyaperumal Thanigaimani, ${ }^{\text {a }}$ Packianathan Thomas Muthiah ${ }^{\mathbf{a} *}$ and Daniel E. Lynch ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ${ }^{\mathbf{b}}$ Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, England

Correspondence e-mail:
tommtrichy@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.127$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Hydrogen-bonding patterns in 2-amino-4,6-dimethoxypyrimidine-4-aminobenzoic acid (1/1)

In the title cocrystal, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$, the 2-amino-4,6dimethoxypyrimidine molecule interacts with the carboxyl group of the 4 -aminobenzoic acid molecule through N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming a cyclic hydrogen-bonded motif $\left[R_{2}^{2}(8)\right]$. This motif further selforganizes through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate an array of six hydrogen bonds with the rings having the graph-set notation $R_{2}^{3}(6), R_{2}^{2}(8), R_{4}^{2}(8), R_{2}^{2}(8)$ and $R_{2}^{3}(6)$. The 4 -aminobenzoic acid molecules self-assemble via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a supramolecular chain along the c axis.

Comment

Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker \& Santi, 1965). The adducts of carboxylic acids with 2 -aminoheterocylic ring systems form a graph-set motif of $R_{2}^{2}(8)$ (Lynch \& Jones, 2004). The crystal structure of 2-amino-4,6-dimethoxy pyrimidine has also been reported (Low et al., 2002). The crystal structure of 4 -aminobenzoic acid (Lai \& Marsh, 1967) is known. The interplay of strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, forms supramolecular motifs, involved in the molecular packing of organic solids. (Taylor \& Kennard, 1982). In the present study, the hydrogenbonding patterns in the 2 -amino-4,6-dimethoxypyrimidine-4aminobenzoic acid (1/1) cocrystal, (I), are investigated.

(I)

The asymmetric unit (Fig. 1) contains one 2 -amino-4,6dimethoxypyrimidine molecule and one 4 -aminobenzoic acid molecule, which are linked by $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3$ and $\mathrm{O} 4-$ $\mathrm{H} 4 \cdots \mathrm{~N} 1$ hydrogen bonds (Table 1), forming an eightmembered ring of graph-set notation $R_{2}^{2}(8)$ (Etter, 1990; Bernstein et al., 1995). This type of pairing has been observed in the crystal structure of 2 -aminopyrimidine-fumaric acid (Goswami et al., 1999) and 2-aminopyrimidine-(+)-camphoric

Received 14 June 2006
Accepted 16 June 2006

A view of the asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2
Hydrogen-bonding (dashed lines) patterns in compound (I).

Figure 3
Hydrogen-bonding (dashed lines) patterns in the supramolecular chain in compound (I) [symmetry code: (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$].
acid (Goswami et al., 2000). This motif further self organizes through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2) to generate an array of six hydrogen bonds with the rings having the graphset notations $R_{2}^{3}(6), R_{2}^{2}(8), R_{4}^{2}(8), R_{2}^{2}(8)$ and $R_{2}^{3}(6)$. The 4aminobenzoic acid molecules self-assemble via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a supramolecular chain along the c axis, with the graph-set notation $C(9)$; this is shown in Fig. 3. The pyrimidine ring is centrosymmetrically linked through a
pair of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving a methyl group (C7) and methoxy atom O2. A $\pi-\pi$ stacking interaction between two aminopyrimidine groups (at x, y, z and $-x, 1-y$, $-z$), with a perpendicular separation of $3.306 \AA$, a centroidcentroid distance of 3.4129 (8) \AA and a slip angle (the angle between the centroid vector and the normal to the plane) of 14.39° has also been observed. These are typical aromatic stacking values (Hunter, 1994).

Experimental

A hot methanol solution (20 ml) of 2-amino-4,6-dimethoxy pyrimidine (38 mg , Aldrich) and 4 -aminobenzoic acid (34 mg , Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; after a few days, colourless plate-like crystals were obtained.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$
$Z=4$
$M_{r}=292.30$
Monoclinic, $P 2_{1} / c$
$a=6.6358$ (4) A
$b=7.5560$ (5) \AA
$c=27.4226(16) \AA$
$\beta=94.418(2)^{\circ}$
$V=1370.89(15) \AA^{3}$

Data collection

Bruker-Nonius KappaCCD areadetector diffractometer φ and ω scans
Absorption correction: none
$D_{x}=1.416 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, colourless
$0.44 \times 0.32 \times 0.08 \mathrm{~mm}$

14577 measured reflections
3130 independent reflections
2469 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0746 P)^{2}\right. \\
& +0.4081 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.45 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.016 \text { (4) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.86	2.07	$2.8546(17)$	152
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3$	0.86	1.96	$2.8180(17)$	172
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~N} 1$	0.82	1.83	$2.6426(16)$	171
N4-H4A O^{ii}	0.86	2.47	$3.0621(18)$	127
N4-H4A $\cdots \mathrm{O} 4^{\mathrm{ii}}$	0.86	2.45	$3.1566(18)$	140
$\mathrm{C} 7-\mathrm{H} 7 C \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.96	2.60	$3.4578(18)$	150

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $\quad-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; \quad (iii)
$-x,-y+1,-z$.
All H atoms were positioned geometrically and were refined using a riding model. The $\mathrm{C}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths are $0.93-$ $0.96,0.82$ and $0.86 \AA$, respectively $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\right.$ (parent atom) $]$.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

organic papers

ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 2003).

DL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.

References

Baker, B. R. \& Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126
Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. \& Razak, I. A. (1999). Acta Cryst. C55, 583-585.
Goswami, S., Mukherjee, R., Ghosh, K., Razak, I. A., Shanmuga Sundara Raj, S. \& Fun, H.-K. (2000). Acta Cryst. C56, 477-478.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Hunter, C. A. (1994). Chem. Soc. Res. 23, 101-109.
Hunt, W. E., Schwalbe, C. H., Bird, K. \& Mallinson, P. D. (1980). Biochem. J. 187, 533-536.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lai, T. F. \& Marsh, R. E. (1967). Acta Cryst. 22, 885-893.
Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. \& Glidewell, C. (2002). Acta Cryst. C58, o289-o294.

Lynch, D. E. \& Jones, G. D. (2004). Acta Cryst. B60, 748-754.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

